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LETTER TO THE EDITOR

Electron channel drop tunnelling

L Dobrzynski, B Djafari-Rouhani, A Akjouj, J O Vasseur† and
M L H Lahlaouti‡
Laboratoire de Dynamique et Structures des Matériaux Moĺeculaires, UPRESA CNRS 8024,
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Abstract. We consider the tunnelling between two monomode quantum wires. We give, in closed
form, the conditions for selective transfer of a single propagating electron from one wire to the
other, leaving all the neighbouring states unaffected. We illustrate the results of the analysis by
analytical solutions for a simple composite system made out of GaAs wires. The electron channel
drop tunnelling in this system is due to one localized state situated within a gap of the coupling
device. The energy of this state is tuned to be that of the Fermi energy.

Electron waveguiding in quantum wires was first identified in quantum point contacts at low
temperatures where the conductance was found to be quantized in discrete values of 2e2/h

[1, 2]. Electron waveguiding has also been observed during the transfer of states between
electron guides [3, 4]. Such transfer processes are particularly important for single-energy
electron spectroscopy and electron directional couplers. Of special interest is the selective
transfer of a monoenergy electron from one quantum wire to the other, leaving all other states
unaffected. However, to our knowledge, the general conditions needed to realize optimal
electron transfer have not been established until now.

In this letter we give first, in closed form, conditions for complete channel drop tunnelling
for any monomode electronic coupling device having the symmetry of two orthogonal mirror
planes. We then illustrate these results using a simple device made from monomode GaAs
quantum wires as an example.

Let us consider the generic system schematically presented in figure 1(a). This system
has the symmetry of two mirror planes, which are shown by dashed lines. The two continuums
are the two infinite wires passing by points (1, 2) and (3, 4), respectively. It is also convenient
to consider the finite system (1, 2, 3, 4) obtained by removing the four semi-infinite lines at
points 1, 2, 3 and 4. Consider a propagating state excited in the semi-infinite line attached
to point 1. The corresponding reflectionR and transmission coefficientsT1j , j = 2, 3, 4 are
related to the elementsg(1j) of the Green’s function [5] of this system by the relations

R = |1 + 2iα g(11)|2 (1a)

T1j = |2iα g(1j)|2 j = 2, 3, 4. (1b)

In equation (1), the parameterα is defined, for monomode electrons, asα = √2mE/h̄, where
E is the electron energy,m its mass and i= √−1. By simple symmetry arguments, it is
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Figure 1. (a) The general system under consideration. (b) The special system for application.

straightforward to show that the elementsg(1j) must have the following general form

g(11) = Z1 +Z2 +Z3 +Z4 (2a)

g(12) = Z1 +Z2 − Z3− Z4 (2b)

g(13) = Z1− Z2 +Z3− Z4 (2c)

g(14) = Z1− Z2 − Z3 +Z4 (2d)

where

Zn = 1/[4α(yn − i)] n = 1, 2, 3, 4. (3)

Equations (1), (2) and (3) are valid for any composite system having the symmetry of two
mirror planes. In equation (3), theyn are purely real quantities determined by the finite
structure contained in the shaded square (1, 2, 3, 4), and the imaginary terms are due to the
semi-infinite wires. Combining equations (1), (2) and (3), one finds easily that in order to have
a complete transfer of a propagating state at a given energy,E0, from site 1 to site 3 (namely
T13 = 1 andR = T12 = T14 = 0), one must fulfill, forE = E0, the following conditions

y1 = y3 = −1/y2 = −1/y4. (4)

If one wants this energyE0 to be in the middle of a gap1E for which only direct transmission
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exists (namelyT12 = 1 andR = T13 = T14 = 0), one must fulfill the following conditions in
this domain

y1 = y2 = −1/y3 = −1/y4. (5)

In other words, these conditions (5) require that the system which couples the two
continuums must have a gap in the above defined energy domain. The conditions (4) imply that
the complete system must have one resonant energyE0 inside this gap. The conditions (4) and
(5) enable one to determine the parameters of the system, provided theyn are known. Detailed
expressions of theyn will be given later for a particular system having a specific geometry.

In this letter, we consider mesoscopic structures made of one-dimensional quantum wires.
As already observed by Singha Deo and Jayannavar [6], this one-channel case provides a good
approximation to a real wire with finite width at low temperatures, at which only the lower
subband is filled. Moreover, energy-level spacings produced by transverse confinement must
be larger than the energy range of the longitudinal transport and thermal broadening,kBT . In
this regime, a quantum wire behaves as a single-mode electron waveguide. In such mesoscopic
systems, electrons traverse the device as coherent waves with negligible inelastic scattering
[7] and electron transport is then identical to microwave propagation through waveguides.

With these assumptions, the electronic currentsIj for coherent transport from contact 1
to contactj = (2, 3, 4) are given by the Landauer–Büttiker formula [8]

Ij = 2e

h

∫ ∞
0
T1j (E)

[
fj (E)− f1(E)

]
dE (6)

where

fj (E) =
[
1 + exp

(
(E − µj)/kBT

)]−1

is the Fermi function for contactj and the electrochemical potentialsµj are chosen such that
µ2 = µ3 = µ4 < µ1. ForkBT � (µ1− µ2), equation (6) reduces to

Ij = 2e

h
T1j (EF )(µ1− µ2) (7)

whereEF is the Fermi energy. In these conditions, the electron current will flow from terminal 1
to terminal 2 in all situations, with one exception. When the coupling device is tuned so that
E0 = EF = (µ1 + µ2)/2, the electron current will flow from terminal 1 to terminal 3. This
system therefore acts as an electron directional coupler.

In what follows, we illustrate the general conditions (4) and (5) by choosing one very
simple system, shown schematically in figure 1(b). This system is built from the two infinite
quantum wires passing by the points (1, 2) and (3, 4), respectively. The distance between
points 1 and 2,d0, is the same as that between points 3 and 4. Four identical monomode
structures are branched between points (1, 5), (5, 4), (2, 6) and (6, 3). These structures have
N equidistant (distanced1) sites. Stars ofN ′ side branches of lengthd2 are grafted onto the
(N − 2) internal sites. In figure 1(b),N andN ′ are equal to 5 and 2, respectively. Similar
structures have been studied before [6], and have been shown [9] to have giant gaps. They
also allow the adjustment of the energy range of these gaps to a desired domain by tuning the
distanced2, d1 and the numbersN andN ′. One wire of length 2d3 is fixed between points 5
and 6 with a side branch of lengthd4 in its middle. Following earlier results [9], it is easy to
obtain the elements of the Green’s function of such structures.

In order to give, for this special system, the analytical expressions of theyn defined in
equation (3), let us define the quantities

Am = −1/ tan(αdm) (8)

Bm = 1/ sin(αdm) (9)
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withm = 0, 1, 2, 3, 4. A0 andB0 are associated with the finite parts situated between points (1,
2) and (3, 4) of the infinite wires. We also define the termsA5 andB5 related to the structures
with large gaps grafted between points (1, 5), (5, 4), (2, 6) and (6, 3) as

A5 = −N ′A2 − A1− B1 sin(Nkd1)/ sin [(N − 1)kd1] (10)

B5 = B1 sin(kd1)/ sin [(N − 1)kd1] (11)

wherek is defined by

cos(kd1) = − 1

B1

(
A1 +

N ′

2
A2

)
. (12)

Equation (12) is the dispersion relation [9] of such an infinite guide.
The properties of the structure grafted between points 5 and 6 in figure 1(b) are related to

B6 = −B2
3/(2A3 +A4) (13)

A6 = A3 +B6. (14)

The definition of these quantities leads to the following expressions for theyn associated with
the final system depicted in figure 1(b). They are given as

y1 = y2 − 2B2
5/(2A5 +A6 +B6) (15)

with

y2 = A0 +B0 +A5 (16)

y3 = A0 − B0 +A5 (17)

y4 = y3− 2B2
5/(2A5 +A6− B6). (18)

Now, for kBT � (µ1− µ2), we are able to accurately determine these system parameters for
a complete channel drop tunnelling between the two continuums at an energyE0 = EF =
(µ1 + µ2)/2 falling in the middle of the gap1E. First, the conditiony2y3 = −1 (equations
(4) and (5)) is satisfied for

A5(E0) = 0. (19)

We determine the lengthd0 such that

y2(E0) = −y3(E0) = 1 (20)

by choosing

tan(α0d0/2) = 1 (21)

whereα0 =
√

2mE0/h̄.
So we study the quantityA5(E) given by equation (10) and chooseN,N ′, d1 andd2

in order that equation (19) shall be satisfied inside the1E gap. The quality factor of the
transferred energy peak increases when the gap1E increases, as well as the requirements on
the precision of the distancesdm. The remainder of the conditions given by equation (4) are
then satisfied for

A6(E0) = 0 (22)

B6(E0) = B2
5(E0). (23)

These last two conditions lead to

tan(α0d3) = 1/B2
5(α0) (24)

tan(α0d4) = −1

2
tan(2α0d3) (25)
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Figure 2. Variation in intensity as a function of energy of the transmitted signal from site 1 to site 2
(solid curve), and the forward signal (T13) (dashed curve), for the structure shown in figure 1(b).
The dotted curve represents the signal intensity in the backward direction (T14). These theoretical
results were obtained forN = 6, N ′ = 2, d0 = 16.4 nm, d1 = d2 = 10 nm,d3 = 16.3 nm,
d4 = 32.9 nm andm = 0.067m0. The resonant energy isE0 = EF = 72.166 meV.

which define the distancesd3 andd4 for a givenE0.
In order to illustrate the results of the above analytic theory, we give in figure 2 the

variations of the transmission coefficientsT12, T13 andT14 versus the energyE. Figure 2
shows both the dip (solid curve) in the direct transmission from site 1 to site 2 (T12) and
the forward drop (dashed curve) from site 1 to site 3 (T13). The backward transferred
signal from site 1 to site 4 (T14) is completely absent over the entire energy range and is
represented by the dotted curve in figure 2. This application was done for GaAs, with
N = 6, N ′ = 2, d0 = 16.4 nm, d1 = d2 = 10 nm, d3 = 16.3 nm, d4 = 32.9 nm and
m = 0.067m0 wherem0 is the free electron mass. With these parameters, the energyE0 is
equal to 72.166 meV. One can easily check that equations (20) and (25) are verified with these
values. The quality factor of the sharp peaks, defined as the ratio between the central energy
and the full width at half maximum, is of the order of 580. A more complete study shows that
this quality factor depends strongly on the characteristic lengths as well as on the integersN

andN ′.
The present work can be compared with references [3, 4]. In these papers, the authors

consider the tunnelling between two multimode electron waveguides through a potential barrier.
Their tunnelling current oscillations for each given transverse mode have a different nature
from those we report here in our monomode model, because we have a different tunnelling
mechanism due to one localized state. Their study does not allow, as ours does, for the definition
of a complete transfer at a given energy. Let us also mention that similar investigations are
underway for electromagnetic waves [10,11].

In summary, we have investigated the tunnelling between two monomode continuums
coupled by a monomode structure. Our electronic model system allows a complete analytical
study of the conditions for a selective transfer of a coherent propagating state from one
continuum to the other, leaving all the other neighbour states unaffected. The energy domain
where the channel drop tunnelling occurs only depends on the characteristic lengths of the
constituents of the model system. We think that our model system may have many applications,
in particular, for an electron directional coupler.
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